

SYSTEM DESCRIPTION

The **Wolfin Membrane System** is a combination of purpose designed termination and mounting accessories with a number of strong, elastic, weldable sheet membrane materials together with a detailing and inspection regime.

All membrane types are completely bitumen compatible, have excellent UV and variable temperature behaviour and do not require protection against Australian weather conditions. All membrane types also tolerate light service traffic.

The range of membranes is based on the same material (Wolfin), varying in thickness, reinforcement and bonding method to suit the full range of structural waterproofing conditions. Wolfin Membranes Australia Pty Ltd (WMA) strictly controls all Wolfin membrane system installations.

Termination designs are specific, designed for each project and are mandatory on the Applicators. The Applicators are subject to tight workmanship supervision and thorough final inspections on all projects.

The design philosophy in all cases is completely *self-sufficient* waterproofing. The systems are all designed to accept flexible structures and chemically aggressive environments.

WOLFIN MEMBRANE TYPES

Wolfin IB (unreinforced):

This is the standard *un-bonded* general-purpose membrane, intended for loose laid applications.

It is useful for:

- New roofing and tanking situations on any substrate, where wind uplift is prevented by the use of ballast or toppings
- Waterproofing lightweight structures
- Waterproofing heavy duty structures, such as bridges
- Retrofit roofing and tanking: compatible with all existing membrane materials and it is generally not necessary to remove existing failed materials
- Relief of trapped moisture in retrofit applications: the membrane diffuses vapour
- May be topped with any desired finishing or wearing course materials.

Colours available: light grey or black.

Standard thickness: 1.5mm or 2mm thickness available for extreme duty applications.

Wolfin GWSK (reinforced):

This is the standard general-purpose **bonded** membrane, intended for all situations. It is a reinforced version of Wolfin IB, coated on one side with a powerful butyl-modified bituminous adhesive. The adhesive is a permanent elastomer and will tolerate thermal and structural movements.

It is useful for:

- Roofs etc where exposed and subject to wind uplift forces
- Balconies, terraces and where artificial grass, rubber matting, tiles or similar finishes are to be laid over the membrane
- Tanking or similar where mechanical damage may be a risk
- Road bridges: under the wearing course
- Detailing to the bolts of plant or steel column mountings.

Colours available: light grey or black.

Standard thickness: 2.3mm thickness available

Wolfin M (reinforced):

This is Wolfin IB with a polyester mesh reinforcement extruded into the centre of the membrane.

It is not laminated and it is useful where very high (1600Nmm) tensile behaviour is sought and elasticity is less critical.

WOLFIN SYSTEM ACCESSORIES

Wolfinsteel:

The profiles are cut and press broken to any desired size or shape. Wolfinsteel comprises 24gge galvanised steel with an 0.8mm thick layer of Wolfin factory bonded to one side.

It is useful for:

- All terminations (other than AF6 below) and intermediate fixings, such as high walls or long spans
- Integrated cappings and overflashings, which can be decorated if desired with any good quality acrylic or vinyl coating
- Concrete or masonry: galvanized pin Nylon Anchors
- Timber, plywood or FC: Mason Ammson wafer head self-tapping screws, gauge and length to individual specification

All installations are finished with an overweld of membrane, encapsulating the fixings. Typical termination detail applications ate shown on standard drawings WSD – 1 TO 4. All special cases are to be advised to WMA for fixing selection and other materials may only be used by Applicators with WMA express permission.

Standard colours: light grey or black, to match the selected membrane.

Stainless Wolfinsteel:

Wolfinsteel is also available in 316S stainless steel in lieu of galvanised. It is otherwise similar to standard Wolfinsteel in all respects although available only in black. It is useful for exterior profiles (such as cappings/overflashings) in marine and/or aggressive environments.

Wolfin AF6:

This is a section extruded from the same material as **Wolfin IB**. It is intended to be cast into concrete to form a highly efficient reglet termination, waterstop either side of cold joints or as an intermediate mounting. It may be fitted to any type of formwork (including steel) and may be used in precast work. Placement to formwork is only performed by a Wolfin Applicator.

Sealants:

Generally sealants are only used in the saw-cut (P5) Detail.

The types supplied are:

- General purpose: Bostik Seal 'n' Flex 1 one part urethane
- Heavy duty (such as below ground): Bostik Seal 'n' Flex FC one part urethane
- Marine or very wet conditions: Refer WMA for advice
- Road joints, deck joints and special conditions: refer WMA for advice

Other materials may only be used by Applicators with express WMA permission.

Projex Shockmat:

Shockmat is a reclaimed rubber sheeting available in 5mm or 10mm thick.

It is useful for:

- Service walkways and roof plant surrounds
- Soundproofing underlay to hard roof and balcony finishes
- The 10mm thick is also use for membrane protection under heavily reinforced concrete and on rail bridges.

ACCESSORIES RECOMMMENDED BUT NOT SUPPLIED

The following adhesives have been tested for adhesion to Wolfin and have performed satisfactorily on those tests. They are not supplied by WMA:

Bonding Shockmat or Artificial Grass to the membrane: Holdfast SG226

Bonding Ceramic direct to the membrane: A product will be recommended for each case

Quarry Tiles direct to the membrane (skirting tiles only): A product will be recommended for each case

Protective media: A product will be recommended for each case

Geotextile fabrics : A grade will be nominated for each case

Concrete, topping or mortar bed slip planes: A product will be recommended for each case.

Technical Information WOLFIN® IB

WOLFIN IB Roof- and Waterproofing Membranes are non reinforced, homogenous, soft plasticized extruded thermoplastic membranes. Since 1962 WOLFIN membranes have been applied in Building Construction and Civil Engineering as well as for foundations, ponds- and kitchen sealing (DIN 18195).

Requirements fulfilled to DIN 18531 (Dachabdichtungen) DIN 18195 (Bauwerksabdichtung), DIN V 20000-201 and DIN V 20000-202 plus CE-marking according EN 13956 and EN 13967, testing's according DIN 4102-1 (B2) and EN 13501-1 (E)

Henkel AG&Co KGaA, has been certified in compliance with DIN EN ISO 9001 and DIN EN ISO 14001.

WOLFIN® means:

- bitumen compatible
- homogene hot air- and cold weldable
- · suitable for all insulation materials
- free of toxic heavy metals
- diffusion open
- root resistant acc. to FLL
- mineral oil resistant

- WOLFIN means equal physical properties throughout the whole membrane thickness
- ozone- and UV-stable
- almost acid- and alkaline resistant
- cold resilience till 45°C (AIB bending test)
- long proved duration (>30 years)
- suitable for recycling

Membrane Type and Application Fields:

WOLFIN® IB non reinforcement

 membrane width:
 1100 mm
 and
 1620 mm

 length:
 15 m
 15 m

 area:
 16,5 m²
 24,3 m²

nominal thickness: 1,5 mm / 2,0 mm* (furth.thickn.upon request)

new building + refurbishment:

loose laid under ballast

special application: waterproofing under mastic asphalt

WOLFIN / SBS-torch-on method

Colour: black, grey, further colours upon request

System parts etc.

 inner- and outer corners 	stainless steel drain- and vent elements
 sky light kerb corners 	 stainless steel overflows etc.
 coated metal sheets 	 lightning protection elements
 special profile systems 	 adhesion systems

Hotline Technik-, Tel.: +49 6053 / 708-141

This technical data sheet was produced according to the latest technical knowledge and standards of Henkel AG&Co KGaA, Bautechnik Deutschland, WOLFIN, Am Rosengarten 5, D-63607 Wächtersbach. Technical changes due to further developments are possible.

page: 1 of 2 status: 02/09

^{*2,0} mm role length = 10 m

Technical Information WOLFIN [®] IB

Produktdaten gem. DIN EN 13956

und

Produktdaten gem. DIN EN 13967

unter Auflast (Kies/Begrünung/Verkehrsflächen o.ä.) covered application (gravel, greenroof)

Feuchtigkeitssperre

damp proof sheets

Grundwassersperre

basement tanking

				Ergebnis		
Eigenschaft		Prüfnorm	Einheit	Angaben	1,5 mm	2,0 mm
Äußere Beschaffenheit	Visible defects	DIN EN 1850-2	-	erfüllt/passed	erfüllt/passed	erfüllt/passed
Länge	Length		m	MDV	15	10
Breite	Width	DIN EN 1848-2	m	MDV	1,1/1,62	1,1/1,62
Geradheit	Straightness	DIN EN 1848-2	mm	MLV	≤ 50	≤ 50
Planlage	Flatness		mm	MLV	≤ 10	≤ 10
Flächengewicht	Mass per unit area	DIN EN 4040 0	kg/m²	MDV	1,9	2,5
Effektive Dicke	Effective thickness	DIN EN 1849-2	mm	MDV	1,5	2,0
Wasserdichtigkeit	Water tightness	DIN EN 1928 B	kPa	MLV	≥ 400	≥ 400
Brandverhalten	Reaction to fire	DIN EN 13501-1	-	s. 5.2.5.2	Е	Е
Schälwiderstand der Füg	enaht Joint peel resistance	DIN EN 12316-2	N/50 mm	MLV	≥ 150	≥ 150
Scherwiderstand der Füg	•	2 2			_ 100	_ 100
	Joint shear resistance	DIN EN 12317-2	N/50 mm	MLV	≥ 600	≥ 600
Zugfestigkeit	Tensile strenght	DIN EN 12311-2	N/mm²	MLV	≥ 16	≥ 16
Dehnung	Elongation	DIN EN 12311-2	%	MLV	≥ 300	≥ 300
Perforationsverhalten	Resistance to impact					
Verfahren A) Verfahren B)	Method A) Method B)	DIN EN 12691 DIN EN 12691	mm mm	MLV MLV	≥ 600 ≥ 600	≥ 750 ≥ 750
Widerstand gegen statisc		DIN EN 12730			_ 555	
	esistance to static load	Methode B	kg	MLV	≥ 20	≥ 20
Dauerhaftigkeit Wasserd	0 0	DIN EN 1296 nach		6"114/		felle/
	ertightnes against aging ichtheit gegen Chemikalien	DIN EN 1928 DIN EN 1847 nach	-	erfüllt/passed	erfüllt/passed	erfüllt/passed
Ŭ	ntnes against chemicals	DIN EN 1928	-	erfüllt/passed	erfüllt/passed	erfüllt/passed
Weiterreißwiderstand Na	gelschaft					
Maitarrai@uidaratand	Resistance to nail tear	DIN EN 12310-1	N	MLV	≥ 250	≥ 250
Weiterreißwiderstand	Tear resistance	DIN EN 12310-2	N	MLV	≥ 100	≥ 100
Wurzelfestigkeit Resista	ance to root penetration	DIN EN 13948	-	erfüllt/passed	erfüllt/passed	erfüllt/passed
Maßänderung nach War	mlagerung Dimensional stability	DIN EN 1107-2	%	MLV	≤ 1,5	≤ 1,5
Falzen in der Kälte	ility at low temperature	DIN EN 495-5	°C	MLV	≤ -25	≤ -25
UV-Beanspruchung	UV exposure	DIN EN 1297	visuell	erfüllt/passed	erfüllt/passed	erfüllt/passed
Hagelschlagbeständigke	•	DIN EN 13583	m/s	MLV	≥ 25	≥ 25
Wasserdampfdurchlässig				μ = MDV oder		10.000 ±
	ater vapour properties	DIN EN 1931	-	15000	10.000 ± 3.000	3.000
Bitumenverträglichkeit	Exposure to bitumen	DIN EN 1548 90 d / 70°C	-	erfüllt/passed	erfüllt/ <i>passed</i>	erfüllt/passed

Erläuterung: MDV = manufacturer's declared value (Herstellerangabe mit Toleranz)

MLV = manufacturer's limiting value (Grenzwert des Herstellers)

This technical data sheet was produced according to the latest technical knowledge and standards of Henkel AG&Co KGaA, Bautechnik Deutschland, WOLFIN, Am Rosengarten 5, D-63607 Wächtersbach. Technical changes due to further developments are possible.

page: 2 of 2 status: 02/09

WOLFIN Henkel

Technical Information WOLFIN® GWSK with Protect Equipment

WOLFIN Roof- and Waterproofing Membranes are soft plasticized extruded thermoplastic membranes. Since 1962 they have been applied in Building Construction and Civil Engineering as well as for foundations, ponds- and kitchen sealing (DIN 18195).

Approvals according DIN 16726 and UEATc guideline, Requirements fulfilled to DIN 18531 (Dachabdichtungen) DIN 18195 (Bauwerksabdichtung), DIN V 20000-201 and DIN V 20000-202 plus CE-marking according EN 13956 and EN 13967, testing's according DIN 4102-1 (B2) and EN 13501-1 (E) as well as DIN 4102-7 (harte Bedachung) and DIN ENV 1187 / prEN 13501-5 (BROOF (t1) without a fire protection layer between polystyrene thermo insulation and WOLFIN GWSK membrane.

Henkel AG&Co KGaA, has been certified in compliance with DIN EN ISO 9001 and DIN EN ISO 14001.

WOLFIN® means:

- bitumen compatible
- homogene hot air- and cold weldable
- · suitable for all insulation materials
- free of toxic heavy metals
- diffusion open
- root resistant acc. to FLL
- mineral oil resistant

- WOLFIN means equal physical properties through the whole membrane thickness
- ozone- and UV-stable
- · almost acid- and alkaline resistant
- cold resilience till 45°C (AIB bending test)
- long proved duration (>30 years)
- suitable for recycling

Membrane Type and Application Fields:

WOLFIN® GWSK with a special inner layer of glass fleece and self adhesive

layer acc. to EN 13956 and to EN 13967 (PVC-P-BV)

membrane width: 1100 mm length: 20 m area: 22,0 m²

nominal thickness: 2,3 mm / 2,8 mm

new building +

refurbishment: adhered construction

Colour: black, grey, further colours upon request

System parts etc.

 inner- and outer corners 	•	stainless steel drain- and vent element
 sky light kerb corners 	•	stainless steel overflows etc.
 coated metal sheets 	•	lightning protection elements
 special profile systems 	•	adhesion systems

Hotline Technik-, Tel.: +49 6053 / 708-141

This technical data sheet was produced according to the latest technical knowledge and standards of Henkel AG & Co. KGaA, Bautechnik Deutschland, WOLFIN, Am Rosengarten 5, D-63607 Wächtersbach. Technical changes due to further developments are possible.

page: 1 of 2 status: 02/09

Technical Information WOLFIN [®] GWSK with Protect Equipment

Produktdaten gem. DIN EN 13956

und

Produktdaten gem. DIN EN 13967

freiliegende Verlegung (verklebt) exposed application (fully adhered)

Feuchtigkeitssperre

damp proof sheets

exposed application (fully adhered) unter Auflast (Kies/Begrünung/Verkehrsflächen o.ä.) covered application (gravel, greenroof)

Grundwassersperre

basement tanking

					Ergebnis **	
Eigenschaft		Prüfnorm	Einheit	Angaben	2,3 mm	2,8 mm
Äußere Beschaffenheit	Visible defects	DIN EN 1850-2	-	erfüllt/passed	erfüllt/passed	erfüllt/passed
Länge	Length	DIN EN 1848-2	m	MDV	15 / 10	10 / 10
Breite	Width		m	MDV	1,1/1,62	1,1/1,62
Geradheit	Straightness	1	mm	MLV	≤ 50	≤ 50
Planlage	Flatness		mm	MLV	≤ 10	≤ 10
Flächengewicht	Mass per unit area	DIN EN 1849-2	kg/m²	MDV	2,7	3,3
Effektive Dicke	Effective thickness		mm	MDV	1,5	2,0
Wasserdichtigkeit	Water tightness	DIN EN 1928 B	kPa	MLV	erfüllt/passed	erfüllt/passed
Brandverhalten	External fire protection	DIN ENV 1187	-	Anhang E	B _{ROOF} (t1)*	B _{ROOF} (t1)*
Brandverhalten	Reaction to fire	DIN EN 13501-1	-	s. 5.2.5.2	Е	Е
Schälwiderstand der Füg	genaht Joint peel resistance	DIN EN 12316-2	N/50 mm	MLV	NPD	NPD
Scherwiderstand der Fü	genaht Joint shear resistance	DIN EN 12317-2	N/50 mm	MLV	≥ 600	≥ 600
Zugfestigkeit	Tensile strenght	DIN EN 12311-2	N/mm²	MLV	≥ 10	≥ 10
Dehnung	Elongation	DIN EN 12311-2	%	MLV	≥ 200	≥ 200
Perforationsverhalten Verfahren A) Verfahren B)	Resistance to impact Method A) Method B)	DIN EN 12691 DIN EN 12691	mm mm	MLV MLV	600 600	750 750
Widerstand gegen statis	che Belastung Resistance to static load	DIN EN 12730 Methode B	kg	MLV	≥ 20	≥ 20
Dauerhaftigkeit Wasserd Durability wat	dichtheit gegen Alterung ertightnes against aging	DIN EN 1296 nach DIN EN 1928	-	erfüllt/passed	erfüllt/passed	erfüllt/passed
•	dichtheit gegen Chemikalien htnes against chemicals	DIN EN 1847 nach DIN EN 1928		erfüllt/passed	erfüllt/passed	erfüllt/passed
Weiterreißwiderstand Na	Resistance to nail tear	DIN EN 13859-1			≥ 350	≥ 350
Weiterreißwiderstand	Tear resistance	DIN EN 12310-2	N	MLV	≥ 150	≥ 150
	ance to root penetration	DIN EN 13948		erfüllt/passed	erfüllt/passed	erfüllt/passed
Maßänderung nach War	mlagerung Dimensional stability	DIN EN 1107-2	%	MLV	≤ 0,5	≤ 0,5
Falzen in der Kälte Foldal	bility at low temperature	DIN EN 495-5	°C	MLV	≤ -20	≤ -20
UV-Beanspruchung	UV exposure	DIN EN 1297	visuell	erfüllt/passed	erfüllt/passed	erfüllt/passed
Hagelschlagbeständigke		DIN EN 13583	m/s	MLV	≥ 25	≥ 25
	vater vapour properties	DIN EN 1931	-	μ = MDV oder 15000	25.000 ± 7500	25.000 ± 7500
Bitumenverträglichkeit	Exposure to bitumen	DIN EN 1548 90 d / 70°C	-	erfüllt/passed	erfüllt/passed	erfüllt/passed

Erläuterung: MDV = manufacturer's declared value (Herstellerangabe mit Toleranz)

MLV = manufacturer's limiting value (Grenzwert des Herstellers)

This technical data sheet was produced according to the latest technical knowledge and standards of Henkel AG&Co KGaA, Bautechnik Deutschland, WOLFIN, Am Rosengarten 5, D-63607 Wächtersbach. Technical changes due to further developments are possible.

page: 2 of 2 status: 02/09

THE MEMBRANE WITH SUPERIOR CHEMICAL RESISTANCE

Chemical Resistance

Organic Chemicals

(90 days immersion test at room temperatures)

	1. Aliphatic Compounds			
		Petrol ether		+
		Cyclohexane		+
Inorganic Chemicals		Turps substitute (Deka	lin)	+
1. Acids and alkalies	Test	Methylene chloride		/
Hydrochloric acid	50% sol. +	Ethanol		+
Sulphuric acid	50% sol. +	Glycol		+
Nitric acid	10% sol./	Acetone		0
Ammonia	conc. +	Formic acid	88% sol.	+
Soda solution	25% sol. +	Actic acid	20% sol.	+
Mixed sulph. and	10% sol. +	Oilic acid		+
hydrochl. acid solution		Lactic acid	10% sol.	+
		Acrylic acid	99.5% so	1./
2. Aqueous Solutions				
Water	+	2. Aromatic Compour	ıds	
Hydrogen peroxide	conc. /	Benzene (benzol)		/
Hydrogen peroxide	3% sol. +	Xylene (xylol)		Ο
Sodium sulphite	10% sol. +	Tetraline		+
Sodium sulphite	10% sol. +	Petrol-benzene	50:50	/
Sodium chloride	sat.sol. +	Petroleum		+
Sodium thiosulphate	10% sol. +			
Pot. chromate	10% sol. +	Miscellaneous		
Pot. bromide	sat.sol. +	Lubricating oil		+
Copper sulphate	10% sol. +	Fuel Oil		+
Ammonium nitrate	10% sol. +	Silicone fluid		+
Magnesium chloride	10% sol. +	Chlorid KaOH	40% sol.	+
		Sugar solution	50% sol.	+
		Fertilizer: pot. sol.	sat	+
		Nitrophoska sol.	sat.	+
		Milk of lime sol.	sat	+

Key to symbols: + inert (unaffected)

0 affected but not unstable (superficial swelling may become brittle)

/ unstable

THE SUPERIOR WATERPROOFING MEMBRANE

Summary of technical investigations carries out on Wolfin IB

No.1 Physical properties – General

Tests (Units)	Method*	Mean Results
Density (kgm ⁻³)	MOAT 29:4.4	2281
Ash CTest (Units)	Method*	Mean
ontent (%)	MOAT 29:4.5	7.61
Dehydrochlorination inflection time (minute	es) MOAT 29:4.11	
-unaged		39.4
-180 days heat aged at 80 °C		33.9
-UV aged (1)		26.4
-bitumen treated (2)		33
Water Absorption (%)	BS 2782(430A)	0.37
Water vapour permeability (gm ⁻² d ⁻¹)	BS 3177 (75% RH/25°C)	2.6
Water vapour resisitance (Mnsg ⁻¹)	BS3177	2.6
	(75% RH/25°C)	78.9
Plasticizer content (%)	MOAT 29:45.6	
-unaged		18.52
-180 days heat aged at 80		18.48
-180 days water soak at 23		19.89
-SO2 aged (3)		20.3
-bitumen treated (2)		15.53

^{(1) 1000} light hours UV aged in general accordance with ASTN 53-7.

⁽²⁾ bitumen embedded in 95/25 grade bitumen aged for 90 days at 50.

⁽³⁾ SO aged for 28 days in accordance with MOAT 29: 1984, 4.19.4.

^{*} Test documents are detailed below. Numbers in the table refer to sections/parts of the various documents.

UEAtc MOAT 27: 1983 general directive for the assessment of roof waterproofing systems.

UEArc MOAT 29: 1984 Directives for the Assessment of Roofing Systems using PVC sheets without reinforcement, loose laid under heavy protection and not compatible with bitumen.

BS 2782 Method of testing plastics.

BS 3177: 1959 Method for determining the permeability of water vapour of flexible sheet materials used for packaging.

THE SUPERIOR WATERPROOFING MEMBRANE

Summary of technical investigations carries out on Wolfin IB

No.2 Physical properties – Directional

Test (Units)	Method*	Mean	Results
		Longitudinal	Transverse
Tensile strength (Nmm ⁻²)	MOAT 29:4.8		
-unaged		17.7	16.9
-180 days heat aged at 80 °C		17.7	17.4
-56 days water soak at 25 °C		17.4	16.3
-UV aged (1)		17.4	17.2
-SO2 aged (2)		16.6	15.8
-bitumen treated (3)		18.5	17.3
	MOAT 29:4.8		
Elongation (%)			
-unaged		348	365
-180 days heat aged at 80°C		329	361
-56 days water soak at 23 °C		335	334
-UV aged (1)		330	368
-SO2 aged(2)		368	371
-bitumen treated(3)		318	326
Tear propagation (mean load Nmm ⁻¹)	BS2782 (360B)	79.6	89.8
Dimension free stability (%)	MOAT		
• ` '	27:5.1.6.1		
Dimensional restrained stability (%)	MOAT	-1.03	0.89
	27:5.1.6.1		

^{(1) 1000} light hours UV aged in general accordance with ASTM 53-77 (4 hours 45 C UV/4 hours 40 C condensation).

^{(2) 28} days SO aged in accordance with MOAT 29: 1984, 4.19.4.

⁽³⁾ bitumen embedded in 95/25 grade bitumen aged for 90 days at 50 C.

[•]Test documents are detailed below. Numbers in the table refer to sections/ parts of the various documents.

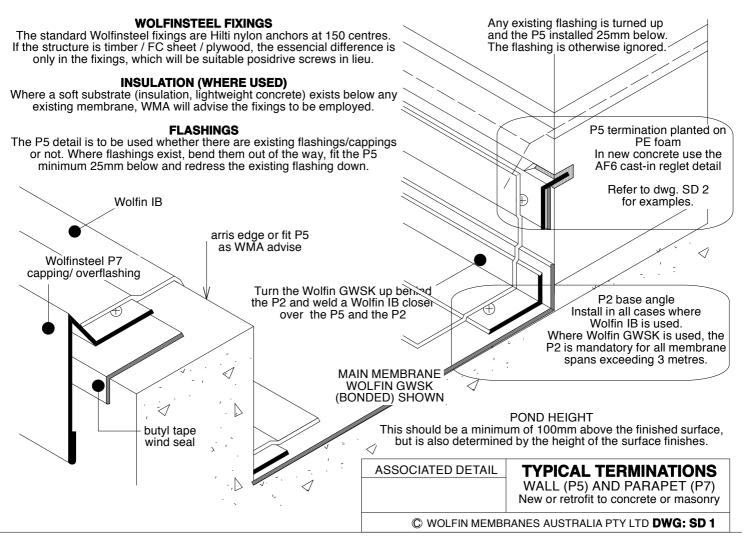
UEAtc MOAT 27: 1983 General Directive for the Assessment of Roof Waterproofing Systems.

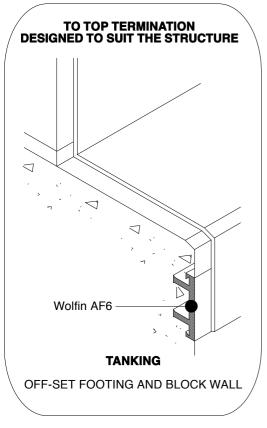
UEAtc MOAT 29: 1984 Directives for the Assessment of Roofing Systems using PVC sheets without reinforcement, loose laid under the heavy protection and not compatible with bitumen.

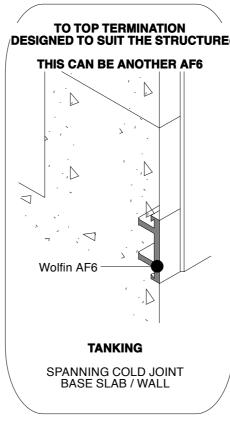
THE SUPERIOR WATERPROOFING MEMBRANE

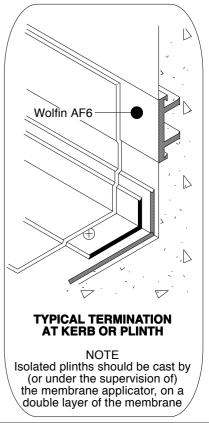
Summary of technical investigations carries out on Wolfin IB

No.3 Service performances

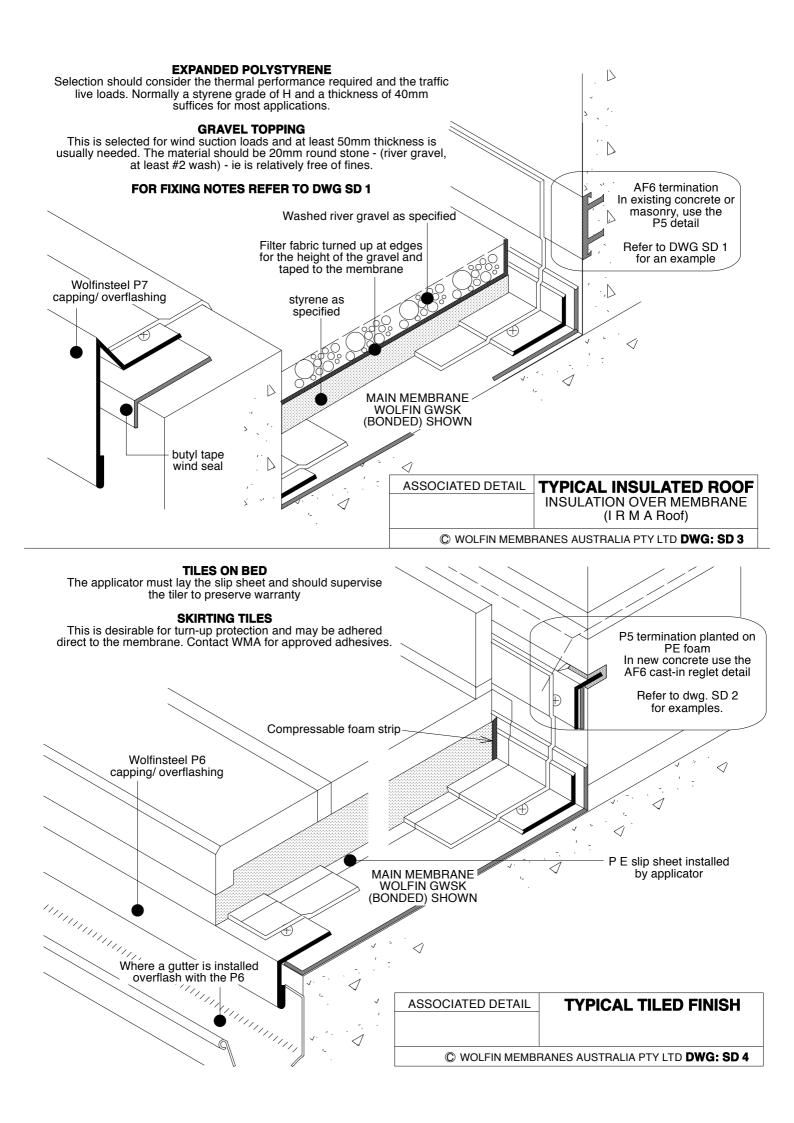

Test (Units)	Method*	Mean Results
Water pressure (6 metres)	MOAT 27:5.14	No penetration
Low temperature flexibility (at -25 °C)	MOAT 27:5.4.2	
-unaged		No cracking
-180 days heat aged at 80 °C		No cracking
-UV aged		No cracking
Static indentation	MOAT 27:5.1.9	
-concrete sybstrate		L4
expanded polystyrene		L4
Dynamic Indentation	MOAT 27:5.1.10	
-chipboard substrate		I 4
-expanded polystyrene		I3
Unrolling ar low temperatures/0°C	MOAT 27:5.4.3	Satisfactory
Tests on joints Air pressure at 10kPa	MOAT 27:5.2.1	
-hot air weld		No penetration
-solvent weld		No penetration
Tensile strength (N)	MOAT 27:5.2.2/4	
hot air weld		
-unaged		944
-28 days heat aged at $80^{\circ}\mathrm{C}$		910
-7 days water soak at 60 °C		822
solvent weld		
-unaged		851
-28 days heat aged at $80^{\circ}\mathrm{C}$		913
-7 days water soak at 60 °C		855
Weldability (Nmm ⁻¹)	MOAT 29:4.17.2	
-hot air weld		2.94
-solvent weld		2.88

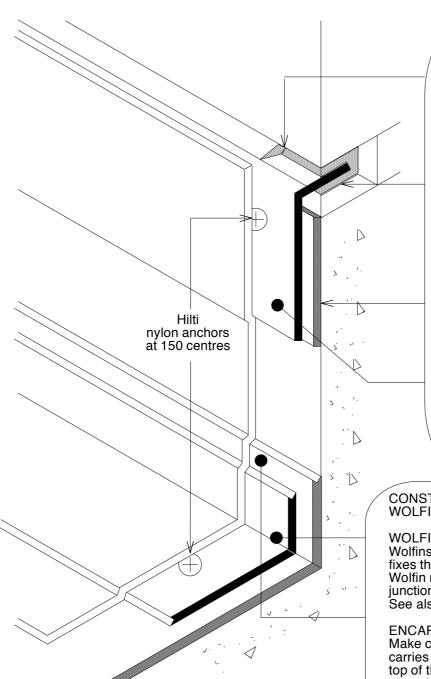

⁽¹⁾ Results are satisfactory for the central zones of roofs up to 20 m in height in the UK.


^{*} Test documents are derailed below. Numbers in the table refer to section/ parts of the various documents.


UEAtc MOAT 27: 1983 General Directive for the Assessment of Roof Waterproofing Systems.

UEAtc MOAT 29: 1984 Directives for the Assessment of Roofing Systems using PVC sheets without reinforcement, loose laid under heavy protection and not compatible with bitumen.





CONSTRUCTION NOTES WOLFINSTEEL P5

SAWCUT

Masonry:

Open out joint to 20 mm deep or run a sawcut in the face.

Concrete:

Sawcut 6 mm wide by 20 mm deep. Sawcuts to be straight and clean.

URETHANE

Prime and fill sawcut with approved one part urethane before inserting P5. Ensure a good fill for gap closure.

On completion neatly apply a second run of urethane. See also Note 1.

SEPARATION LAYER

38 wide closed cell polyethylene foam tape as separator between steel and masonry. See also Note 2.

WOLFINSTEEL

Wolfinsteel - 40 mm X 15 mm angle - set lengths min. 3 mm apart to allow for expansion. Patch together before fixing with Wolfin IB covering the full girth.

CONSTRUCTION NOTES WOLFINSTEEL P2

WOLFINSTEEL

Wolfinsteel P2 - 40 mm X 15 mm angle - this fixes the perimeters in shear and clamps the Wolfin membrane snugly into the floor/ wall junction.

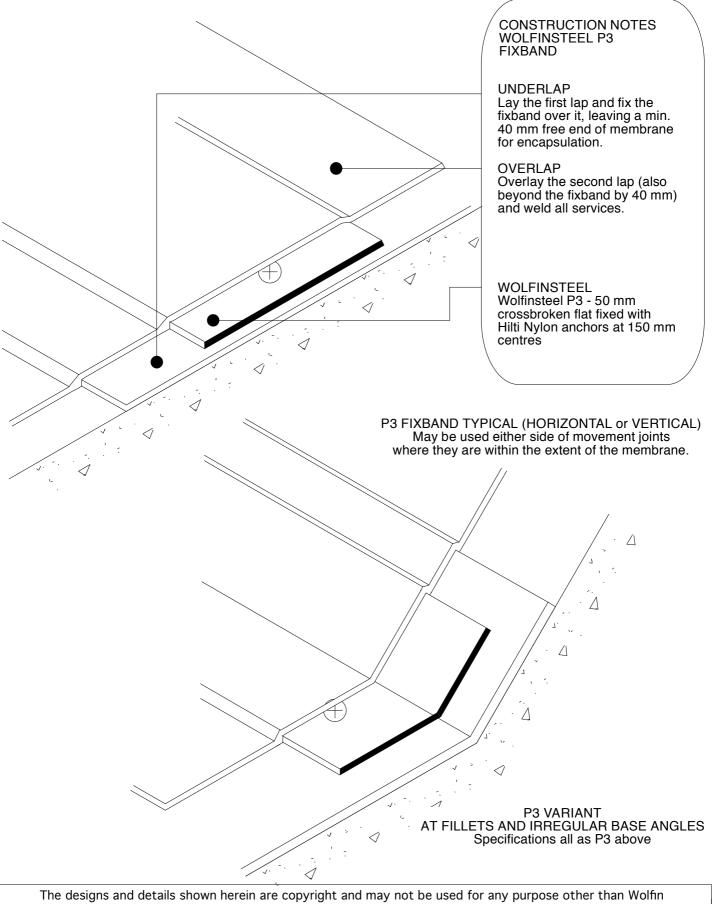
See also Note 3.

ENCAPSULATION

Make certain that the deck membrane carries up the wall minimum 15mm above the top of the P2. Ensure that the skirt membrane extends onto the deck minimum 40mm beyond the P2 base and is completely welded to both the P2 and the membrane behind.

Notes:

- 1. The prefill is the necessary water barrier and is critical. Ensure that the P5 is ready and fully patched before applying the urethane to the sawcut fit while the urethane is wet. For isolated expansion joints: horizontal or underwater applications: Wolfin will advise sealant selection.
- 2. Check substrate conditions with WMA. 1mm thick semi-cured butyl tape may be specified in lieu of the foam tape, depending on substrate conditions.
- 3. The P2 detail is mandatory at the base of all upturns. Clearance from WMA is to be sought should alternatives be considered necessary.


The designs and details shown herein are copyright and may not be used for any purpose other than Wolfin detailing without the written permission of Wolfin Membranes Australia Pty Ltd (WMA)

WOLFIN MEMBRANES AUSTRALIA - CONCEPT/SHOP DWG.

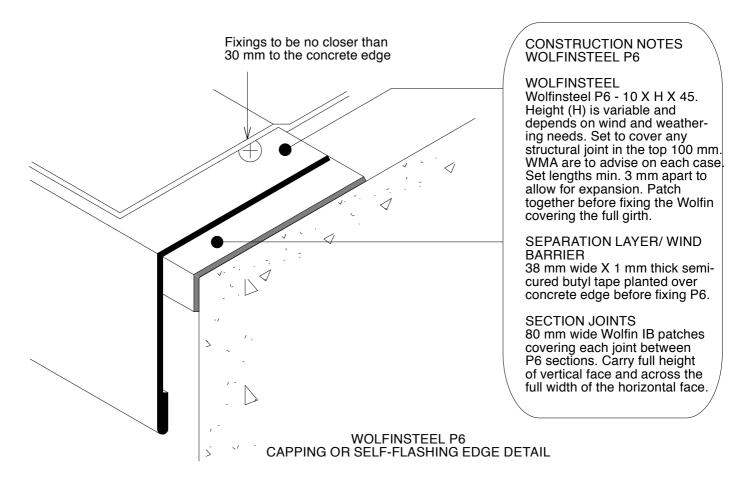
CUTAWAY SECTION
Typical Details
P2 (Base Angle) and P5
(Wall or Floor Termination)

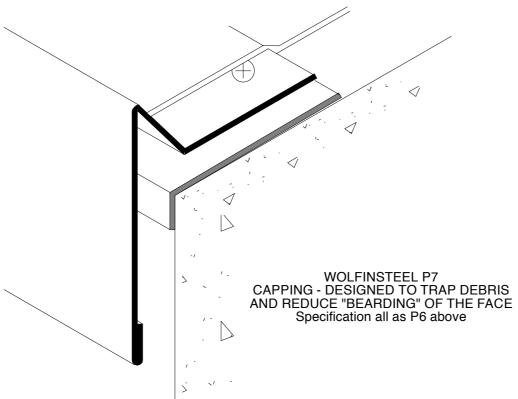
DATE: Nov 2009

DWG. No: WSD - 1

The designs and details shown herein are copyright and may not be used for any purpose other than Wolfin detailing without the written permission of Wolfin Membranes Australia Pty Ltd (WMA)

WOLFIN MEMBRANES AUSTRALIA - CONCEPT/SHOP DWG.

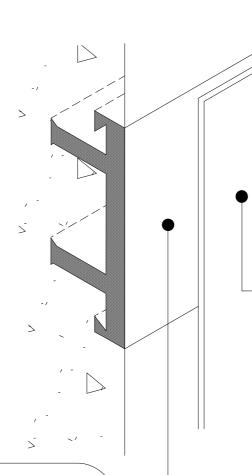

CUTAWAY SECTION


Typical Details

P2 (Base Angle) and P5

(Wall or Floor Termination)

DWG. No: WSD - 2



The designs and details shown herein are copyright and may not be used for any purpose other than Wolfin					
detailing without the written permission of Wolfin Membranes Australia Pty Ltd (WMA)					
WOLFIN MEMBRANES AUSTRALIA - CONCEPT/SHOP DWG.	CUTAWAY SECTION	SCALE: Full Size			
	Tynical Details				

Typical Details
P6 (Capping / edge)
and P7 (Anti-beard capping)

DATE: Nov 2009

DWG. No: WSD - 3

CONSTRUCTION NOTES MEMBRANE TO AF 6

CHECK

Examine the AF 6 after stripping of formwork to ensure that there has been no dislodgement during the strip and identify any bony concrete. If any such faults are found, report them to the builder and call WMA.

PREPARATION

Using a small angle grinder, scrub the laitence and protruding staples off the face of the AF 6 and lightly roughen the surface.

INSTALLATION

Weld the membrane to the prepared surface as normal.

CONSTRUCTION NOTES WOLFIN AF 6

COORDINATION

The Wolfin AF 6 is fitted by the applicator, not by the formworker. Discuss with the builder in advance to ensure feasibility - formwork erection sequence - and reinforcement steel placement.

The above factors can make installation difficult if not pre-arranged.

INSTALLATION

Check the specification to determine who is responsible for the level set-out. If builder, ensure the line is clearly applied to the formwork. If applicator, ensure that the drawings are carefully checked.

FITTING

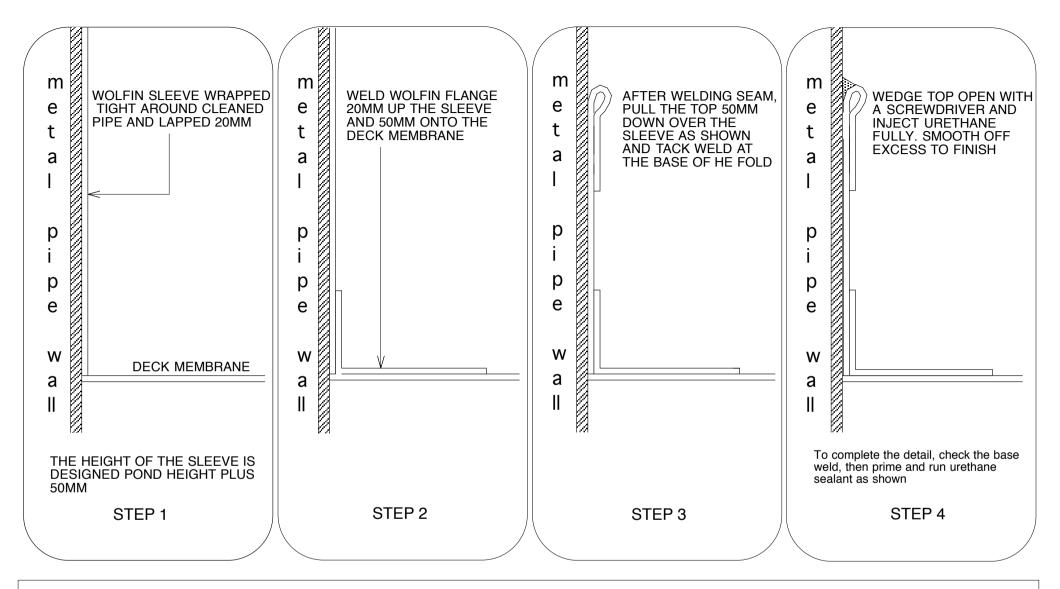
Using a 10 mm staple gun staple both outer wings to the formwork at approx. 100 mm centres. All changes of direction are to be mitred and welded with a Wolfin welding axe.

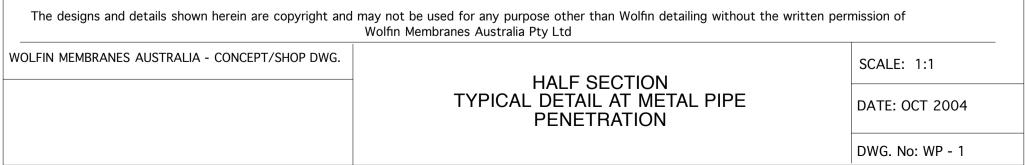
WOLFIN AF 6 REGLET

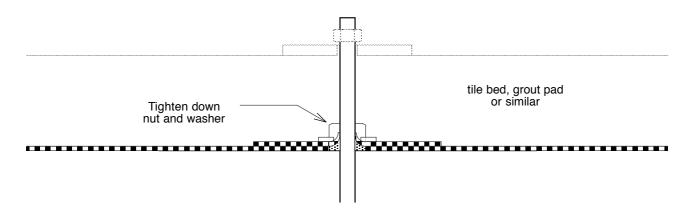
This is the preferred detail for terminations in new concrete structures.

It can also be installed in some horizontal surfaces where desired and WMA should be called for advise for such cases. Rectification of any poor (bony) concrete found can usually be achieved by installing a P5 loop - intersect the P5 into one of the AF 6 wings at each end of the loop. A P5 can also be intersected with the AF 6 to give continuity for both details where they occur in the same surface.

The designs and details shown herein are copyright and may not be used for any purpose other than Wolfin detailing without the written permission of Wolfin Membranes Australia Pty Ltd (WMA)

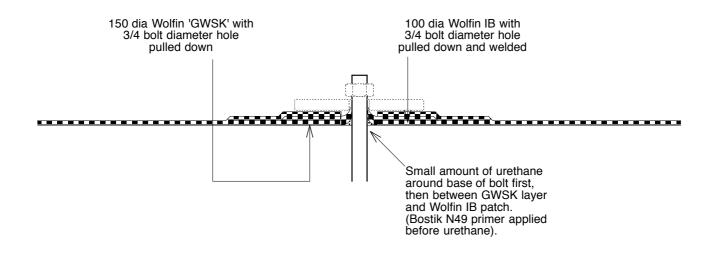

WOLFIN MEMBRANES AUSTRALIA - CONCEPT/SHOP DWG.


CUTAWAY SECTION
Typical Details
AF 6
Cast-in Reglet


SCALE: Full Size

DATE: Nov 2009

DWG. No: WSD - 4



Shows the case where the device is separated from the membrane by a tile bed or similar.

Also drawn to show a bolt drilled later.

TYPICAL DETAIL AT BOLTS PENETRATING MEMBRANE

DETAIL SD 9.02

This drawing is intended to show basic princ minimum standards. Any variation in site con referred to WMA for approval of the requi The thickness scale on this drawing is exagge	ditions is to be ired detail.	COMMENTS / ASSOCIATED	DRAWINGS
© WOLFIN MEMBRANES AUSTRALIA PTY LTD			Scale: 1: 5
Standard Guide Details	Bolt Details		Date: May 2011
Standard duide Details			Dwg No: SD - 9.02